Assign 4 Combinatorics

November 27, 2017 1:46 PM

Name:	Date:
	<u>Combinatorics</u>
1. In how many different w	rays can a 3-person committee be selected from 6?
$6(z = \frac{1 \times 2 \times 2}{1 \times 2 \times 2}$	$\frac{1}{3} = 2 \cdot 2 \cdot 2 \cdot 2$
	nks horses 1, 4, 6 will be the top 3 horses in the race, but not necessarily in that order. If Bit ferent outcomes are possible?
1,4,6	2 <u>3 5 7</u>
	$2 \frac{3}{1} \frac{5}{17}$
3'. ×	
6 ×	24
= 140	
 A committee of 3 studen different committees can 	ts is to be selected from a group of 10 to be on a committee to plan a school trip. How many be selected?
\0 _{C>=}	10×9×8 1×2×5
	= 10 × 3 × 1 = 120
	3CDEFG, how many triangles can be constructed whose vertices are among the points A, B
C, D, E, F, and G?	7 points, EACH TRIANGLE
	resur 3 by
	$F(s = 7 \times 6 \times 5 = 85)$
-	tter "words" are possible such that the letters of each word are in alphabetical order? (For F is in alphabetical order.)
266	3= 2/6×25×24 1×××3
	= 13 × 25 × 8
	$= 2600 \mu$
All Rights Reserved to Homew	ork Depot at <u>www.BCMath.ca</u>

6. 3 pennies are to be placed onto a 5 b y 5 grid. How many ways can you place the 3 pennies such that non of them share the same row or column?

7. An election has three different positions: President, Vice President, and Secretary. There are 4 people running for President, 3 for VP, and 5 for Secretary. If a person is voting on a ballot, how many ways can someone fill in the ballot. Assume that you can not submit an empty ballot.

Pr.	VP	S
4 ×	3 ×	5=60

8. How many ways can 5 people A, B, C, D and E sit in a row if A must be to the left of B but not necessarily next to each other? $5! = 5 \times 4 \times 3 \times 2 \times 1 = 125$ have a mem A left ABname a mem A left AB $= 5 \times 4 \times 3 \times 2 \times 5$ $1 \times 2 \times 5$ = 60 J.

How many ways can 3 boys and 3 girls sit in a row if:
 a. There are no restrictions on where they sit in the row?

6

b. All the boys sit together, and all the girls sit together?

3: X3: X2 BABABA

c. Only the boys must sit together, the girls choosing the other seats?

41, × 31 666 (AAA)

All Rights Reserved to Homework Depot at www.BCMath.ca

10. A committee consists of 4 men and 2 women. A subcommittee is to be formed consisting of 1 man and 1 woman. In how many different ways can the subcommittee be formed?

11. There are 8 boys and 12 girls in a class. A team of 5 is to be formed with 3 girls. How many different teams are possible?

8B 12G.	$= \frac{\$ \times 7}{1 \times 2} \times \frac{12 \times 11 \times 10}{1 \times 2 \times 3}$	52
C_{2} C_{3}	= 22 × 2×(1×10	((
8(2×12(3	= 6160	

12. There are 8 boys and 12 girls in a class. A team of 5 is to be formed with 3 girls. If the teams must have at least 2 boys, how many different teams are possible?

13. Three boys and their girlfriends have 6 seats at a hockey game. In how many ways can they be seated if each couple must sit together?

$$\begin{array}{rcl} \overrightarrow{AB} & \overrightarrow{CO} & \overrightarrow{BF} & \rightarrow & \overrightarrow{3}. \times 2 \times 2 \times 2 \\ & = & 6 \times 8 \\ & = & 4 & 8 \\ & = & 4 & 8 \\ \end{array}$$

14. There are ten teams in a school district competition. Each team plays each other team once. What is the total number of games played in the competition?

$$10C_2 = \frac{10 \times 9}{1 \times 2} = (95)$$

All Rights Reserved to Homework Depot at www.BCMath.ca

3

15. An intramural league has 4 teams. If each team is scheduled to play each of the remaining teams exactly twice during the season, how many games are scheduled

$$\frac{4(z \times 2)}{\frac{4\times3}{1\times2}} = 12$$

16. If there are 8 people in a room and each person shakes every other person's hand once, how many handshakes will there be?

17. Nine people apply for a job in which 2 people are selected to work in an office and 3 in the work yard. In how many different ways can the selection be made?

All Rights Reserved to Homework Depot at www.BCMath.ca

4