Name:

Date:

Combinatorics

1. In how many different ways can a 3 -person committee be selected from 6 ?

$$
6 C_{3}=\frac{6 \times 5 \times 4}{1 \times 2 \times 3}=20
$$

2. In a 7 horse race, Bill thinks horses $1,4,6$ will be the top 3 horses in the race, but not necessarily in that order. If Bill is correct, how many different outcomes are possible?

3. A committee of 3 students is to be selected from a group of 10 to be on a committee to plan a school trip. How many different committees can be selected?

$$
\begin{aligned}
\triangle O C_{3}= & \frac{10 \times 9 \times 8}{1 \times 2 \times 3} \\
= & 10 \times 3 \times 4=120
\end{aligned}
$$

4. In a regular heptagon ABCDEFG , how many triangles can be constructed whose vertices are among the points A, B, $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, and G ?

$$
\begin{aligned}
& 7 \text { point, EAMN Trinuhe } \\
& \text { Nexis } 3 \text { pts. } \\
& 7 C_{3}=\frac{7 \times}{1} \times \frac{6 \times 3}{2} \times 3=35
\end{aligned}
$$

5. How many different 3-letter "words" are possible such that the letters of each word are in alphabetical order? (For example, the "word" ADF is in alphabetical order.)

6. 3 pennies are to be placed onto a 5 by 5 grid. How many ways can you place the 3 pennies such that non of them share the same row or column?
2 Nature s.
ar
$S C_{3} \times 5 C_{3} \times 6$
$\frac{5 x 4+3}{1 \times 2 \times 3} \times \frac{5 \times 4 \times 3}{x+2 \times 3} \times 6$

$\frac{25 \times 16 \times 9}{1 \times 2 \times 3} \leftarrow$ adorer around mattie.
$25 \times 8 \times 3$
$=10 \times 60$
$=600$
7. An election has three different positions: President, Vice President, and Secretary. There are 4 people running for President, 3 for VP, and 5 for Secretary. If a person is voting on a ballot, how many ways can someone fill in the ballot. Assume that you can not submit an empty ballot.

$$
\begin{aligned}
& P_{R .} \quad V P \quad S \\
& 4 \times 3 \times 5=60
\end{aligned}
$$

8. How many ways can 5 people $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E sit in a row if A must be to the left of B but not necessarily next to each other?
$5!=5 \times 4 \times 3 \times 2 \times 1=120$

- hangar them A lett of B
, hamper mem A aby to of B
$\left\{\begin{aligned} \text { N } & S_{3} \times 3^{\prime} \\ = & 5 \times 4 \times 5 \times 6\end{aligned}\right.$

9. How many ways can 3 boys and 3 girls sit in a row if:
a. There are no restrictions on where they sit in the row?

$$
6
$$

b. All the boys sit together, and all the girls sit together?

$$
3^{1} \cdot 3^{1} \cdot \times 2
$$

$$
\angle A A B B B
$$

$$
B B B A A A
$$

c. Only the boys must sit together, the girls choosing the other seats?

$$
4^{\prime} \times 3^{\prime} \quad G G G A A A
$$

10. A committee consists of 4 men and 2 women. A subcommittee is to be formed consisting of 1 man and 1 woman. In how many different ways can the subcommittee be formed?

$$
\begin{aligned}
& 4 C_{1} \times 2 C_{1} \\
& =4 \times 2 \\
& =8
\end{aligned}
$$

11. There are 8 boys and 12 girls in a class. A team of 5 is to be formed with 3 girls. How many different teams are possible?

$$
\begin{array}{ll}
8 B \quad 12 G & =\frac{8 \times 7}{1 \times 2} \times \frac{12 \times 11 \times 10}{1 \times 2 \times 3} \\
C_{2} C_{3} & =28 \times 2 \times 11 \times 10 \\
8 C_{2} \times 12 C_{3} & =6160
\end{array}
$$

12. There are 8 boys and 12 girls in a class If the teams must have at least 2 boys, how many different teams are possible?

$$
\begin{aligned}
& 2 B 3 G_{1} \text { on } 3 B 2 G \text { an } 4 B 1 G \text { ore } 5 B \\
& 8 C_{2} \times 12 C_{3}+8 C_{3} \times 12 C_{2}+8 C_{4} \times 12 C_{1}+8 C_{5}
\end{aligned}
$$

13. Three boys and their girlfriends have 6 seats at a hockey game. In how many ways can they be seated if each couple must sit together?

$$
\begin{aligned}
A B \quad C D & \rightarrow 3^{\prime} \times 2 \times 2 \times 2 \\
& =6 \times 8 \\
& =48 \%
\end{aligned}
$$

14. There are ten teams in a school district competition. Each team plays each other team once. What is the total number of games played in the competition?

$$
10 C_{2}=\frac{10 \times 9}{1 \times 2}=45
$$

15. An intramural league has 4 teams. If each team is scheduled to play each of the remaining teams exactly twice during the season, how many games are scheduled

$$
\begin{aligned}
& 4 C_{2} \times 2 \\
& \frac{4 \times 3}{1 \times 2} \times 2=12
\end{aligned}
$$

16. If there are 8 people in a room and each person shakes every other person's hand once, how many handshakes will there be?

$$
\begin{array}{r}
8 C_{2}= \\
\frac{8 \times 7}{1 \times 2} \\
=28
\end{array}
$$

17. Nine people apply for a job in which 2 people are selected to work in an office and 3 in the work yard. In how many different ways can the selection be made?

$$
\begin{aligned}
& Q_{2} \times 7 C_{3} \\
& \frac{9 \times 8}{1 \times 2} \times \frac{7 \times 6 \times 5}{1 \times 2 \times 3} \\
& =36 \times 35 \\
& =35^{2}+35 \\
& =4225+35
\end{aligned}
$$

